Synthesis and Characterization of $\left[\mathbf{S n}_{2}\left\{\mathbf{C}_{6} \mathbf{H}_{3}-\mathbf{2}, \mathbf{6}\left(\mathbf{2}, \mathbf{4}, \mathbf{6}-\mathrm{i}-\mathrm{Pr}_{3} \mathrm{C}_{6} \mathbf{H}_{2}\right)_{2}\right\}_{2}\right]^{-}$: A Singly Reduced Valence Isomer of a "Distannyne" "

Marilyn M. Olmstead, Richard S. Simons, and Philip P. Power*

Department of Chemistry University of California Davis, California 95695

Received August 7, 1997
The recently reported species $\mathrm{Na}_{2}[\mathrm{ArGaGaAr}]\left(\mathrm{Ar}=-\mathrm{C}_{6} \mathrm{H}_{3}-\right.$ $\left.2,6\left(2,4,6-i-\operatorname{Pr}_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right)_{2}=-\mathrm{C}_{6} \mathrm{H}_{3}-2,6-\mathrm{Trip}_{2}\right)$ has a nonlinear, transgeometry with $\mathrm{C}-\mathrm{Ga}-\mathrm{Ga}$ angles of 128.5(4) and $133.5(4)^{\circ}$ and a $\mathrm{Ga}-\mathrm{Ga}$ distance of $2.319(3) \AA$. It was described as the first example of a compound with a $\mathrm{Ga}-\mathrm{Ga}$ triple bond. ${ }^{1}$ Its transconfiguration and $\mathrm{Ga}-\mathrm{Ga}$ distance (which is marginally shorter than some less sterically crowded $\mathrm{Ga}-\mathrm{Ga}$ singly bonded compounds ${ }^{2}$) suggest a more complex view of the bonding, however. Thus, in simplistic valence bond terms, the dianion [ArGaGaAr] ${ }^{2-}$ may be written in the two extreme forms (a) and (b). In (a) the $\mathrm{Ga}-\mathrm{Ga}$ bond conforms to the normal three-

electron-pair triple bond model commonly associated with the isoelectronic alkynes. In (b) two of the original three bonding pairs become a lone pair at each Ga , which are now connected by a formal single bond leaving an empty p-orbital at each metal perpendicular to the molecular plane. Their bonding should be similar to the unknown isoelectronic neutral neighboring group 14 element derivatives $\operatorname{ArMMAr}(\mathrm{M}=\mathrm{Si}, \mathrm{Ge}, \mathrm{Sn}$, or $\mathrm{Pb})$. Previous work has shown that Ge can triple bond to a transition element in $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2} \mathrm{MoGeC}_{6} \mathrm{H}_{3}-2,6-\mathrm{Mes}_{2}$ (Mes $=2,4,6-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2}-$) where the Ge atom has almost linear ($\mathrm{Mo}-$ $\left.\mathrm{Ge}-\mathrm{C}=172.2(2)^{\circ}\right)$ geometry and there is a short $\mathrm{Mo}-\mathrm{Ge}$ bond length of $2.271(1) \AA .^{3}$ Nonetheless, there are no stable heavier group 14 compounds analogous to either structure (a) or (b). Here, the first example of a related species, in which the neutral tin analog of (a) or (b), ArSnSnAr, is singly reduced to the anion $[\mathrm{ArSnSnAr}]^{-\cdot}$, is now described.

The anion $[\mathrm{ArSnSnAr}]^{-\bullet}$ was synthesized ${ }^{4}$ by the reduction of $\mathrm{Sn}(\mathrm{Cl}) \mathrm{Ar}$ in THF solution. It may be crystallized as either of the salts [K(THF) ${ }_{6}$ [ArSnSnAr] (1) or [K(dibenzo-18-crown6)(THF $\left.)_{3}\right][[\mathrm{ArSnSnAr}] \cdot 2 \mathrm{THF}(2 \cdot 2 \mathrm{THF})$. In THF solution at room temperature, their EPR spectra are essentially identical and exhibit an EPR signal near $g=2.0069$ with hyperfine coupling to the ${ }^{117} \mathrm{Sn}$ and ${ }^{119} \mathrm{Sn}$ nuclei which may be simulated to afford the values $a\left({ }^{117} \mathrm{Sn}\right)=8.3 \mathrm{G}$ and $a\left({ }^{19} \mathrm{Sn}\right)=8.5 \mathrm{G}$.

The X-ray crystal structures of $\mathbf{1}$ and $\mathbf{2}$ have also been determined. ${ }^{5}$ For 1, each asymmetric unit contains a half cation and a half anion, the remainder is generated by a crystallographically required inversion center at K^{+}and at the center of the $\mathrm{Sn}-\mathrm{Sn}$ bond (Figure 1). The K^{+}ion is octahedrally coordinated to six THF molecules with an average $\mathrm{K}-\mathrm{O}$ distance of $2.67(3) \AA$. The $\mathrm{Sn}-\mathrm{Sn}$ and $\mathrm{Sn}-\mathrm{C}$ distances are

[^0]

Figure 1. Computer-generated drawing of 1. Hydrogen atoms are not shown. Important bond distances (\AA) and angles (deg): $\mathrm{Sn}(1)-\mathrm{Sn}-$ (1A) 2.8123(9), $\mathrm{Sn}(1)-\mathrm{C}(1) 2.236(5), \mathrm{K}(1)-\mathrm{O}(1) 2.684(7), \mathrm{K}(1)-\mathrm{O}(2)$ 2.703(6), $\mathrm{K}(1)-\mathrm{O}(3) 2.610(9), \mathrm{C}(1)-\mathrm{Sn}(1)-\mathrm{Sn}(1 \mathrm{~A}) 95.20(13)$.
2.8123(9) and 2.236(5) \AA, and the $\mathrm{Sn}-\mathrm{Sn}-\mathrm{C}$ angle is $95.20-$ (13) ${ }^{\circ}$. In the asymmetric unit of $\mathbf{2}$, there are two half anions as well as a whole cation in which K^{+}is coordinated by dibenzo18 -crown- 6 and three THF molecules. The remaining half of each anion is generated by an inversion center. For the $\mathrm{Sn}(1)$ moiety, there is disorder of the organic substituent over two sites of almost equal occupancy. The $\operatorname{Sn}(1)-\operatorname{Sn}(1 \mathrm{~A})$ distance, $2.7821(14) \AA$, remains unaffected, but there are two, slightly different $\mathrm{Sn}(1)-\mathrm{C}(1)$ distances of 2.293(13) and 2.269(14) \AA and two $\mathrm{C}(1)-\operatorname{Sn}(1)-\operatorname{Sn}(1 \mathrm{~A})$ angles (93.6(4) and 95.0(4) $)^{\circ}$). In the other half anion, the $\operatorname{Sn}(2)-\operatorname{Sn}(2 \mathrm{a})$ and $\operatorname{Sn}(2)-\mathrm{C}(37)$ distances are 2.8236(14) and $2.226(7) \AA$ and the $\mathrm{C}(37)-\mathrm{Sn}-$ (2) $-\mathrm{Sn}(2 \mathrm{a})$ angle is $97.3(2)^{\circ}$.

The structural and spectroscopic data for the anions of $\mathbf{1}$ and $\mathbf{2}$ are consistent with a trans-bent structure for the [ArSnSnAr$]^{-\cdot}$ anion, as represented by structure (\mathbf{d}) in which the lone pairs are located on the tins and the unpaired electron is in a π-orbital formed by overlap of the tin p-orbitals. This species has a formal $\mathrm{Sn}-\mathrm{Sn}$ bond order of 1.5, and the narrow, ca. 95° bond angle at the tins suggests little hybridization at these atoms.

[^1]
(c)

(d)

The $\mathrm{Sn}-\mathrm{Sn}$ distances in 1 and 2 (av $2.806(16) \AA$) are close to the $\mathrm{Sn}-\mathrm{Sn}$ single bond distance in gray tin $(2.80 \AA)^{6}$ and the quasi-double $\mathrm{Sn}-\mathrm{Sn}$ bond length (2.764(2) \AA) in $\mathrm{Sn}_{2}[\mathrm{CH}-$ $\left.\left(\mathrm{SiMe}_{3}\right)_{2}\right]_{4} .^{7}$ The structures of $\mathbf{1}$ and $\mathbf{2}$ appear to imply that the $\mathrm{p}-\mathrm{p} \pi$-bond overlap is quite weak, although a comparison with the $\mathrm{Sn}-\mathrm{Sn}$ distance in the neutral precursors (c) is necessary to confirm this.

We have attempted to isolate the neutral species (c) without success by the use of exactly 1 equiv of KC_{8} per $\mathrm{Sn}\left(\mathrm{Cl}^{2}\right) \mathrm{C}_{6} \mathrm{H}_{3}-$ $2,6-\mathrm{Trip}_{2}$. Apparently, (c) is very susceptible to reduction and (d) is always produced during the reaction. In the current absence of structural data for the neutral (c), the expected structure can be imagined by removing the π-electron. This should result in a slight increase in the $\mathrm{Sn}-\mathrm{Sn}$ bond distance (since the formal bond order is lowered) and the angle at tin may also change slightly, but a trans-bent structure should be retained. The preference for the trans-bent configuration rather than the linear distannyne structure (a) is supported by preliminary $3-21 \mathrm{G}$ basis set calculations ${ }^{8}$ on the hypothetical molecule $\mathrm{MeSnSnMe}(\mathbf{3})$, which show that the trans-bent form, with a $\mathrm{Sn}-\mathrm{Sn}-\mathrm{C}$ angle of 125.0° and an $\mathrm{Sn}-\mathrm{Sn}$ distance of $2.673 \AA$, is $141.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$ more stable than the linear, formally triply bonded $(\mathrm{Sn}-\mathrm{Sn}$ distance $=2.432 \AA)$ form. The $\mathrm{Sn}-\mathrm{Sn}$ distance for trans-bent $\mathrm{MeSnSnMe}{ }^{8}$ affords a Pauling bond order (PBO) value of 1.46. ${ }^{9}$ One explanation for the multiple character comes from the molecular orbital representation of the Me $\dot{S} n$: units which possess doublet ground states which may interact in a donor-acceptor fashion (represented by (e)) with the unpaired electrons in the p-orbitals also interacting to afford further bonding. The implied multiple bonding can be

[^2]
(e)

(f)
represented in valence bond terms by a resonance form (f). The $c a .95^{\circ} \mathrm{Sn}-\mathrm{Sn}-\mathrm{C}$ angles in $\mathbf{1}$ and $\mathbf{2}$, however, suggest that the lone pair donor-acceptor interaction is weak and that the single bond represented by (c) is a reasonable bonding approximation. Calculations on some Si congeners ${ }^{10}$ show that the linear triply bonded form is as little as $20-25 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (Si substituents $=$ $\mathrm{Si}(t-\mathrm{Bu})_{3}$ or $\left.\mathrm{Si}\left(\mathrm{C}_{6} \mathrm{H}_{3}-2,6-\mathrm{Et}_{2}\right)_{3}\right)^{10 \mathrm{a}}$ or as much as $75 \mathrm{~kJ} \mathrm{~mol}^{-1}$ $(\mathrm{Si} \text { substituent }=\mathrm{Me})^{10 \mathrm{a}, \mathrm{b}}$ less stable than the trans-bent structures which have $\mathrm{Si}-\mathrm{Si}$ bonds in the range of 2.068-2.072 \AA, consistent with a PBO of $2.17 \AA .{ }^{11}$

Unfortunately, in the absence of theoretical data on the hypothetical, triply bonded, linear $[\mathrm{MeGaGaMe}]^{2-}$, it is not possible to calculate the PBO of the GaGa bond in $\mathrm{Na}_{2}{ }^{-}$ [ArGaGaAr]. However, we note that the $\mathrm{Ga}-\mathrm{Ga}$ distance ($2.319(2) \AA$) observed ${ }^{1}$ in $\mathrm{Na}_{2}[\mathrm{ArGaGaAr}]$ is quite close to the $2.343(2) \AA$ seen 12 in the anion $\left[\mathrm{Trip}_{2} \text { GaGaTrip }_{2}\right]^{-\bullet}(\mathbf{3})$, which has a formal bond order of 1.5 . Attempted reduction to doubly reduced $\left[\mathrm{Trip}_{2} \mathrm{Ga}=\mathrm{GaTrip}_{2}\right]^{2-}$ (4) with a formal $\mathrm{Ga}-\mathrm{Ga}$ bond order of 2 has not yet been successful. However, the singly and doubly reduced boron analogs of $\mathbf{3}$ and $\mathbf{4}$ have similar $B-B$ distances. ${ }^{13}$ It is thus probable that a putative $\mathrm{Ga}-\mathrm{Ga}$ double bond in $\left[\mathrm{Trip}_{2} \mathrm{GaGaTrip}_{2}\right]^{2-}$ would be similar in length (i.e., $c a .2 .34 \AA$) to the $\mathrm{Ga}-\mathrm{Ga}$ distance in $\left[\mathrm{Trip}_{2} \mathrm{GaGaTrip}_{2}\right]^{-\cdot}$. It is therefore concluded that the $\mathrm{Ga}-\mathrm{Ga}$ bond order in doubly reduced $\mathrm{Na}_{2}[\mathrm{ArGaGaAr}]$ is close to 2 , since it has a very similar $\mathrm{Ga}-\mathrm{Ga}$ bond length as well as a trans-bent, rather than linear, structure.

Acknowledgment. We thank the National Science Foundation for generous financial support and Professor T. L. Allen for useful discussions and suggestions.

Supporting Information Available: Tables of data collection parameters, atom coordinates, bond distances and angles, anisotropic thermal parameters, and hydrogen coordinates (37 pages). See any current masthead page for ordering and Internet access instructions.

JA9727575

(10) (a) Kobayashi, K.; Nagase, S. Organometallics 1997, 16, 2489. (b) Thies, B. S.; Grev, R. S.; Schaeffer, H. F., III. Chem. Phys. Lett. 1987, 140, 355. (c) Colegrove, B. T.; Schaeffer, H. F., III. J. Am. Chem. Soc. 1991, 113, 1557.
(11) For the PBO of an $\mathrm{Si}-\mathrm{Si}$ bond of $2.07 \AA$ long in the trans-bent structure, the $\mathrm{Si}-\mathrm{Si}$ single bond distance of $2.34 \AA$ and a calculated ${ }^{10 \mathrm{~b}} \mathrm{Si}-$ Si triple bond length of $1.938 \AA$ in linear MeSiSiMe were used in accordance with the method described in ref 9.
(12) He, X.; Bartlett, R. A.; Olmstead, M. M.; Ruhlandt-Senge, K.; Sturgeon, B. E.; Power, P. P. Angew. Chem., Int. Ed. Engl. 1993, 32, 717. (13) (a) Grigsby W.; Power, P. P. Chem. Eur. J. 1997, 3, 368. (b) Power, P. P. Inorg. Chim. Acta 1992, 198-200, 443.

[^0]: ${ }^{\dagger}$ Preliminary data for $\mathbf{1}$ were reported at the 213th National Meeting of the American Chemical Society, San Francisco, CA, April 1997.
 (1) Su, J.; Li, X.-W.; Crittendon, R. C.; Robinson, G. H. J. Am. Chem. Soc. 1997, 119, 5471.
 (2) (a) Brown, D. S.; Decken A.; Cowley, A. H. J. Am. Chem. Soc. 1995, 117, 5421; (b) Saxena, A. K.; Zhang, M.; Maguire, J. A.; Hosmane, N. S.; Cowley, A. H. Angew. Chem., Int. Ed. Engl. 1995, 34, 332.
 (3) Simons, R. S.; Power, P. P. J. Am. Chem. Soc. 1996, 118, 11966.

[^1]: (4) All manipulations were carried out under anaerobic and anhydrous conditions. (a) For $\mathrm{Sn}(\mathrm{Cl}) \mathrm{Ar}:\left(\mathrm{Et}_{2} \mathrm{O}\right) \mathrm{LiAr}^{4 \mathrm{~b}}(5.50 \mathrm{~g}, 9.77 \mathrm{mmol})$ in toluene $(50 \mathrm{~mL})$ was added dropwise to a stirred suspension of $\mathrm{SnCl}_{2}(2.24 \mathrm{~g}, 11.81$ mmol) (20% excess) in toluene (10 mL) with cooling in an ice-bath. The mixture was allowed to warm to room temperature and was stirred for 6 h . The resultant green solution (red in transmitted light) was filtered through Celite and was concentrated to incipient crystallization (ca. 30 mL) under reduced pressure. Storage in ca. $-20^{\circ} \mathrm{C}$ freezer for 3 days afforded the product $\mathrm{Sn}(\mathrm{Cl}) \mathrm{C}_{6} \mathrm{H}_{3}-2,6$-Trip $2_{2}(\mathbf{1})$ as orange crystals: yield $1.82 \mathrm{~g}, 2.86$ $\mathrm{mmol}, 29.3 \% ; \mathrm{mp} 205-210{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 1.08(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 12$ $\left.\left.\mathrm{H}, p-\mathrm{CH}(\mathrm{CH})_{3}\right)_{2}\right), 1.21\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 24 \mathrm{H}, o-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.79$ (sept, $J=$ $6.9 \mathrm{~Hz}, 4 \mathrm{H}, o-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, 3.14$ (sept, $\left.J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{p}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 7.24$ (s, $4 \mathrm{H}, m$-Trip), $7.22\left(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}, p-\mathrm{C}_{6} \mathrm{H}_{3}\right), 7.31(\mathrm{~d}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz}$, $\left.m-\mathrm{C}_{6} \mathrm{H}_{3}\right) ; \mathrm{UV}\left(\lambda_{\max }, \epsilon\right) 710 \mathrm{~nm}, 340 ; 522 \mathrm{~nm}, 1180 ; 480 \mathrm{~nm}, 1120$. Anal. Calcd $\mathrm{C}_{36} \mathrm{H}_{49} \mathrm{ClSn}: \mathrm{C}, 67.99 ; \mathrm{H}, 7.77$. Found: C, 67.32; H, 7.51. For $\left[\mathrm{K}(\mathrm{THF})_{6}\right][\mathrm{ArSnSnAr}](\mathbf{1}): 2,6-\mathrm{Trip}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{SnCl}(\mathbf{1})(1.00 \mathrm{~g}, 1.57 \mathrm{mmol})$ and $\mathrm{KC}_{8}(0.21 \mathrm{~g}, 1.54 \mathrm{mmol})$ in THF (20 mL) were stirred rapidly at room temperature for 2 h . All volatile materials were removed under reduced pressure, and the residue was extracted with THF/toluene, $3: 1$ mixture (30 mL), and rapidly filtered through Celite. The dark red solution was concentrated to incipient crystallization and stored in a ca. $-20^{\circ} \mathrm{C}$ freezer for 2 days to afford the product $\mathbf{1}$ as orange-green dichroic crystals: yield $0.36 \mathrm{~g}, 0.22 \mathrm{mmol}, 27 \%$; mp $120{ }^{\circ} \mathrm{C}$ (dec.). Anal. Calcd for $\mathrm{C}_{96} \mathrm{H}_{146} \mathrm{KO}_{6}{ }^{-}$ Sn_{2} : C, $68.92 ; \mathrm{H}, 8.80$. Found C, 68.13; H, 8.97. The compound $2 \cdot 2 \mathrm{THF}$ was obtained similarly except that dibenzo-18-crown-6 was included in the reaction mixture. The product $\mathbf{2} \cdot 2$ THF was obtained in 22% yield, mp 125 ${ }^{\circ} \mathrm{C}$ (dec.). (b) Schiemenz, B.; Power, P. P. Organometallics 1996, 15, 958.
 (5) Crystal data at 130 K with $\mathrm{Mo} \mathrm{K} \alpha(\mathbf{1}, \lambda=0.71073 \mathrm{~A})$ or $\mathrm{Cu} \mathrm{K} \alpha$ (2•2THF, $\lambda=1.54178 \AA$). For 1: $a=13.036(3) \AA, b=21.742(4) \AA, c$ $=17.034(3) \AA, \beta=105.91(3)^{\circ}$, monoclinic, space group $P_{\circ} 2_{1} / c, R_{1}=0.061$ for $5599(I>2 \sigma(I))$ data. For 2•2THF: $a=15.111(3) \AA, b=15.812(3)$ $\mathrm{A}, c=23.189(5) \mathrm{A}, \alpha=81.16(3)^{\circ}, \beta=84.07(3)^{\circ}, \gamma=87.92(3)^{\circ}$, triclinic, space group $P 1, R_{1}=0.088$, with $11429(I>2 \sigma(I))$ data.

[^2]: (6) Wells, A. F. Structural Inorganic Chemistry, 5th ed.; Clarendon: Oxford, 1984; p 1279.
 (7) Goldberg, D. E.; Harris, D. H.; Lappert, M. F.; Thomas, K. M. J. Chem. Soc., Chem. Commun. 1976, 261.
 (8) Allen, T. L. Unpublished results. The corresponding data for the germanium analog are $\mathrm{Ge}-\mathrm{Ge}=2.168 \AA$ and $\mathrm{Ge}-\mathrm{Ge}-\mathrm{C}=130.5^{\circ}$ for the trans-bent form which is $63.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$ more stable than the linear form in which the $\mathrm{Ge}-\mathrm{Ge}$ bond length is $2.014 \AA$. The PBO^{9} for the transbent form assuming a $\mathrm{Ge}-\mathrm{Ge}$ single bond length of 2.44 A (ref 6) is 2.02 . See also: Grev, R. S.; Deleeuw, B. J.; Schaefer, H. F., III. Chem. Phys. Lett. 1990, 165, 257.
 (9) Pauling, L. Nature of the Chemical Bond, 3rd ed.; Cornell University Press: New York, 1960; p 239: The relationship of bond order to length is given by $D\left(n^{\prime}\right)=D(1)-C \log \left(n^{\prime}\right)\left(n^{\prime}=\right.$ bond order, $D(1)=$ single bond length, and C is a constant). If the length of a single bond (from gray tin, i.e., $2.80 \AA^{6}$) and a triple bond ($2.432 \AA$ for the linear form ${ }^{8}$) are plotted on a graph whose ordinates are $\mathrm{Sn}-\mathrm{Sn}$ distance and $\log n^{\prime}$ and connected by a straight line, the PBO for any $\mathrm{Sn}-\mathrm{Sn}$ distance can be estimated. The $\mathrm{Sn}-\mathrm{Sn}$ distance $(2.673 \mathrm{~A})$ in trans-bent MeSnSnMe gives a $\log n^{\prime}=0.164$ giving a PBO of 1.46.

